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The storage component of HPC systems, like most components in these sys-
tems, is built of parts borrowed from other communities and markets. Early in
the development of HPC systems it was recognized that a globally accessible
storage system was desirable, and the HPC community converged on the use
of the Portable Operating System Interface for UNIX (POSIX) I/O model
as its de facto standard: a globally accessible directory tree holding files that
each contain a stream of bytes of user data, with a strong consistency model
enforcing immediate (global) visibility of updates.

As systems have grown in scale, supporting this model has become increas-
ingly problematic, both in terms of performance and in terms of reliability. In
this chapter we will discuss the POSIX model, how the HPC community has
worked to adapt the POSIX model over time to meet its needs, and alternative
models that are emerging from current research.
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30.1 The POSIX Era

The POSIX I/O standard was developed by the IEEE and is currently de-
fined as part of “IEEE Std 1003.1-1988” [13] (often referred to as “POSIX.1-
1998.” There have been numerous updates and corrections since; the latest
version (at the time of this publication) was IEEE Std 1003.1-2013 [1]. The
first version of the POSIX standard was developed when a single computer
operating system managed its own (local) file system, and issues of concurrent
access were limited to the processes running on that operating system. Since
all file accesses went through a single operating system on a single machine,
enforcing strict consistency semantics was relatively easy. Likewise, data (and
metadata such as current file size or last access time) could easily be cached,
lowering the cost of accurately tracking last access, update time, and file size.
This is reflected in the design of the API. For example, when retrieving the
list of files in a directory, the readdir function only retrieves file names; To
obtain extra information (such as file size), a call to fstat needs to be made
for each file found. In a time when disks were local and uniquely accessed
by a single computer and metadata could easily be cached, the cost of per-
forming these extra calls was minimal. However, fast forwarding to modern
times, where file systems are often remote (i.e., exported by file servers) and
shared between multiple client computers, each call requires a round trip to a
remote server. Likewise, caching is no longer straightforward as remote inval-
idation is required to keep cache contents consistent. In this environment, the
cost of providing a single global, consistent view of the file system becomes
exceedingly large.

Another problem with the POSIX model is that it forces a single, high-level
data storage model for all applications, with associated costs, regardless of
whether the semantics of the model are appropriate or not for the application
at hand. For example, data can only be stored in a file. Each file has metadata
such as file size and last access time, that are globally visible and consistent
across all clients, whether an application requires this information or not.
Likewise, each file needs to be in a directory. Creating a file in a directory is an
atomic operation, with immediate global visibility. Because of this, file creation
in a distributed file system can be highly synchronizing and consequently
fundamentally unscalable.

Thus, while many distributed applications use more scalable methods in-
ternally for both I/O and data organization, POSIX offers no possibility of
relaxing its strict rules, needlessly limiting application scalability. To mitigate
this, numerous groups have developed additional layers that provide new or-
ganizational models and reorganize access prior to interacting with POSIX
storage, many of which have been discussed previously in this book, and en-
hancements to POSIX to address scalability limitations have been proposed.



Storage Models: Past, Present, and Future 337

30.2 The Current HPC Storage Model

Considering the high cost (during development as well as at runtime) of
implementing full POSIX I/O compliance in a distributed environment, it
should not come as a surprise that some file systems instead aim to be mostly
compliant. For example, the NFS client emulates the common unlink-after-
open approach of creating temporary files by renaming the file with the goal
of later removing those files (something which does not always succeed). At-
tribute consistency is another area where NFS is not fully compliant. In the
default mode, client-side caching is used to improve performance and reduce
server load. However, this means that full POSIX attribute consistency is not
provided. In addition, there is no guaranteed, portable method to enforce con-
sistency. Some of these issues are being addressed in newer versions (v4) of
the NFS protocol.

In many cases, the POSIX semantics are unnecessarily strict, and conse-
quently most applications continue to function correctly even on these mostly
POSIX-compliant file systems. Thus the current HPC storage model aims to
work around the POSIX shortcomings by adjusting or breaking POSIX where
necessary and leveraging new software layers to optimize I/O before it hits
the POSIX interface. Simultaneously, new storage concepts are being deployed
below the POSIX API that have potential for larger benefits to HPC storage.

30.2.1 The POSIX HPC I/O Extensions

POSIX HPC I/O extensions [9] were designed to improve performance
of POSIX I/O in large scale HPC environments. Software running on these
systems differs from most other software in that on HPC systems, many pro-
cesses, distributed over many nodes, work collectively on a problem. Specifi-
cally, focusing on I/O operations, this means many processes on many nodes
are opening the same file(s) concurrently. Since HPC applications tend to be
more synchronized as well, often all of the operations performed on these files
(such as open) will be issued within a short time interval, leading to very high
and bursty metadata workloads on the file system.

Since POSIX file handles are only valid on the local node, in a distributed
environment—despite accessing the same file—each node is required to open
the file. This causes each individual node to traverse the directory hierarchy
to locate the requested file, causing high metadata overhead at the (remote)
file system. The POSIX HPC extensions seek to reduce this load by allowing
a single node to open the file and then export some representation of the
resulting file handle (for example containing a direct pointer to the enclosing
directory) to other nodes (openg function), which then convert the exported
handle directly to a file handle (sutoc function) without having to perform a
full open call.
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Other extensions include functionality to retrieve both directory contents
and associated file metadata, as well as the ability to retrieve only a subset of
the file metadata. The latter avoids forcing the file system to compute updated
values for all file attributes, some of which (e.g., file size) can be very costly
to obtain.

Adoption and support for the POSIX HPC extensions has been mini-
mal. However, a number of calls similar to the openg and sutoc functions
proposed in the POSIX I/O extensions have made it into the linux kernel:
name to handle at and open by handle at. These functions were added in
May 2011 in linux kernel version 2.6.39.

30.2.2 MPI-IO

The MPI standard is widely used to program HPC systems. In version 2
of this standard, support for file I/O (MPI-IO) was added. Being designed
for distributed computing environments, the MPI-IO model provides a more
suitable API for HPC applications. For example, non-contiguous accesses are
directly supported (through the use of MPI datatypes), and default data con-
sistency is more relaxed, and formally defined. MPI-IO also defines collective
I/O operations, enabling many optimizations such as group open, which offers
similar functionality to the openg POSIX HPC extension call.

However, since MPI-IO is frequently built on top of POSIX I/O func-
tionality, many of the issues described in Section 30.1 resurface. Whenever
possible, MPI-IO uses file system specific calls (for example through the use
of ioctl) to work around some of the POSIX limitations, but these calls are
non-standard and often vary even between version of the same file system.
Widespread adoption of the POSIX HPC extensions would provide MPI-IO
with a portable method to obtain the same effect. When specialized support
is not available for the underlying file system, MPI-IO is limited to POSIX
functionality, including the inability to communicate relaxed data consistency
requirements. Consequently, MPI-IO performance is highly variable from sys-
tem to system [12], causing some application and library developers to avoid
MPI-IO all together.

30.2.3 Object Storage Model

In 1998, Gibson et al. [10] proposed a new storage interface, called Network
Attached Secure Disk (NASD), proposing to replace the low-level sector access
by an object based access API allowing a client to access an object (typically
by numerical identifier) and offset within that object, while the device itself
controls the mapping of the object data to the disk platters. The NASD work
influenced the design of the ANSI T10 Object-based Storage Device (OSD)
standard. This work does not aim to replace the POSIX-I/O functionality;
instead it is intended to offer a basic building block on which other, high-
level I/O functionality can be built. In a sense, these form a replacement for
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plain disks. OSD differ in that they typically offer byte access granularity (as
opposed to sector granularity). The OSD implements the storage operations
(data transfer and layout), without defining any policy.

Many parallel file system implementations today, while exporting a mostly
POSIX compliant model to their clients, internally access local storage using
an object storage model similar to the T10 standard [6, 7, 19, 18]. Unfortu-
nately, as seen with MPI-IO, these object storage abstractions are frequently
built on top of an existing local POSIX file system. This means potential ef-
ficiency gains (for example in avoiding directory overhead) are often not fully
realized. At least one reason for this insistence on building on top of POSIX
is that no other data storage model comes close in terms of availability and
portability.

Luckily, some alternatives are now starting to appear. Seagate, a well
known American data storage company, recently commercialized a disk drive
which exposes storage only as object storage API, as opposed to exposing
low-level sectors, as is still common for disk drives. A widely adopted stan-
dardized object based access method for low-level storage could finally provide
libraries and applications an equivalent solution providing the portability of
POSIX with the flexibility to define their own access semantics (consistency)
and grouping structures (directories or alternatives).

30.3 Post POSIX

Currently, the POSIX model for storage still dominates in HPC. However,
there is increasing use of libraries such as PnetCDF and HDF5 that provide
alternative data models to users. These libraries create an opportunity for
storage system designers: new underlying storage models can be deployed by
mapping these libraries directly onto the new storage model, avoiding the need
to support the POSIX model at all.

Thus, the HPC community may be at the cusp of a “post POSIX” era
where new HPC storage models appear in production systems. When consid-
ering what the storage model(s) in this era might look like, two needs are evi-
dent. First, highly parallel applications (and the libraries that support them)
need to store multiple, concurrent streams of data and organize these conve-
niently. Second, with the explosion of data that is occurring, new methods for
identifying data of interest are increasingly important.

30.3.1 Prior Work

Of course, while production HPC systems have primarily provided POSIX
storage access, software products outside of HPC and research in the HPC



Storage Models: Past, Present, and Future 341

community have pointed to a number of viable alternative models. This section
will discuss a few, more relevant examples.

The IBM Virtual Storage Access Method (VSAM) model [15], defined in
the 1970s, provides a number of features that would be compelling in an HPC
system. Data is stored as records of potentially variable length with multiple
fields. Data items can be referenced with a key, with a record number, or the
file can be directly accessed with byte offsets. Multiple dataset organizations
are provided to cater to specific use cases.

While most users do not realize it, the Microsoft New Technology File
System (NTFS) also provides an interesting alternative model in the form of
alternative data streams [5]. This functionality allows for multiple streams of
data to be associated with the same file name. A default data stream holds
standard “POSIX-style” data, while a colon notation is used to define and
access additional named streams under the same file name.

This model of multiple streams associated with a single file name is not
unique to NTFS, and in fact the approach has appeared in HPC parallel file
systems research as well. The Galley parallel file system [16], developed in
the 1990s, supported a concept of subfiles. In their model, a set of subfiles
were created at the time a file was created that mapped to underlying storage
devices. These subfiles then contained a set of forks that each could hold an
array of bytes (like a normal POSIX file). The authors showed how upper
software layers could map astronomical data into this organization.

The Vesta parallel file system [8] was developed at IBM in the 1990s specif-
ically for HPC. Vesta exposes a 2D structure for files, with physical partitions
holding sequences of records. Physical partitions are similar to subfiles in the
Galley model and are meant to map to storage nodes. This provides a notion
of parallelism of access that has been adopted by current research in the area.

30.3.2 Object Abstractions in HPC

Work in object based file systems set the stage for one possible alternative:
providing direct access to storage objects. Researchers are investigating how
to expose an object abstraction while maintaining the existing name space
abstraction. In this model, a directory entry refers to a collection of objects,
each individually accessible.

The “End of Files” (EOF) [11] project is one such example. Goodell et al.
developed a prototype atop PVFS [7] that allows for a static set of objects
to be associated with a directory entry. Conceptually this is best thought of
as the file system no longer owning the distribution of data into objects, but
rather delegating this to higher level software layers. This approach exposes
the natural unit of concurrency (i.e., the object) and provides multiple data
streams that may be used by upper layers for organizational purposes.

Figure 30.2 shows how the PnetCDF (Chapter 15) library maps netCDF
datasets to a POSIX file (left) or to the EOF object model (right). In the
POSIX file mapping, PnetCDF lays out variables across the single file byte
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FIGURE 30.2: Mapping of PnetCDF dataset to (a) POSIX file, or (b) EOF
objects.

stream. One complication of this process is record variables, which have one
dimension of undefined length. In the netCDF standard, n − 1 dimension
subsets of these variables are interleaved at the end of the file in order to
reduce the overall file size. This organizational choice is problematic for high-
performance access, as it leads to noncontiguous I/O.

In the EOF object model, distinct objects are used to hold metadata and
the data corresponding to variables. The PnetCDF library becomes respon-
sible for mapping multidimensional variables into one or more objects. This
simplifies data layout, especially for record variables that can now be mapped
into distinct object sets without need for interleaving.

The Intel Storage and I/O Fast Forward project [2, 4] is similarly looking
at how high-level data models can be mapped onto exascale storage archi-
tectures. The Intel activity includes three sub-projects: looking at how HDF5
(Chapter 16) can target object storage backends; examining how PLFS (Chap-
ter 14) and I/O Forwarding Software Library (IOFSL) [3] can be adapted to
manage burst buffers to optimize data layout on object storage backends;
and developing a prototype Distributed Application Object Storage (DAOS)
system, building on Lustre (Chapter 8) including a distributed transaction
capability.

The transaction capability is one unique feature of the Intel prototype
I/O stack and is built on top of a versioning capability at the DAOS level.
This capability allows for transactions with Atomicity, Consistency, Isolation,
Durability (ACID) properties when data moves from burst buffer to persistent
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storage. Transactions are similarly supported at the burst buffer layer, and
the augmented HDF5 library takes advantage of these to ensure consistent
transitions of a given dataset.

Another interesting feature of the Intel Fast Forward work is the manner
in which burst buffers are integrated into the overall system. I/O nodes that
manage local NVRAM export three distinct data models for use by application
libraries: a blob object (i.e., a byte stream), a keyword-value object, and an
array object. All are used within HDF5, and the I/O node is responsible for
mapping transactions on these constructs into operations on DAOS objects.
This issue of translations between abstractions at various levels of the I/O
stack is critical, and often overlooked.

30.3.3 Namespaces

Despite hierarchical file systems being declared as dead [17], this model of
data organization still dominates in HPC. While both the EOF and Intel Fast
Forward projects provide alternative organizations for data, neither makes
radical changes to the way we organize and reference named entities.

What seems most likely is that the role of providing namespaces for HPC
applications will be taken over by upper layers of the HPC storage stack,
layers such as HDF5, PnetCDF, and others, with storage systems instead
providing a more rich building block abstraction on which these namespaces
are constructed.

What is even less clear is how search-like capabilities will be integrated into
the HPC storage stack. Activities such as hFAD [17] and Spyglass [14] have
provided some insight, but ultimately HPC search is about application data
structures – not something that the low level storage system is necessarily
even aware of. Perhaps active storage advances will be what ultimately enable
application-oriented searches to be executed local to storage where they can
be performed efficiently.

30.4 Conclusion

The POSIX storage model has been a cornerstone of HPC systems for
decades. As a result of its success, HPC system providers have been slow to
adopt alternatives to the well-understood POSIX file model, but the increasing
use of I/O libraries such as HDF5 and PnetCDF by scientific codes have
eliminated many long-standing dependencies on the antiquated POSIX model
and provided new ways for science teams to interact with storage.

Research has identified a number of promising alternative models, and
the community seems ready to embrace a new model. New additions in the
storage hierarchy, such as the inclusion of nonvolatile memory in the storage
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system, have further disrupted the status quo. With current storage systems
struggling to keep pace, the timing could not be better.
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